A Model-Agnostic Method for PMU Data Recovery Using Optimal Singular Value Thresholding

نویسندگان

چکیده

This paper presents a fast model-agnosticmethod for recovering noisy Phasor Measurement Unit (PMU) data streams with missing entries. The measurements are first transformed into Page matrix, and the original signals reconstructed using low-rank matrix estimation based on optimal singular value thresholding. Two variations of recovery algorithm shown- a) an offline block-processing method imputing past measurements, b) online predicting future measurements. Information within PMU channel (temporal correlation) as well from different channels in network (spatial utilized to recover degraded data. proposed is needs no explicit knowledge underlying system model or measurement noise distribution. performance algorithms illustrated simulated IEEE 39-bus test real anonymized U.S. electric utility. Extensive numeric tests show that can be accurately recovered presence additive noise, consecutive drop, simultaneous erasures across multiple channels.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Singular Value Thresholding

This work studies the Generalized Singular Value Thresholding (GSVT) operator Proxg (·), Proxg (B) = argmin X m ∑

متن کامل

Generalized Singular Value Thresholding

This work studies the Generalized Singular Value Thresholding (GSVT) operator Proxg (·), Proxg (B) = argmin X m ∑

متن کامل

Hybrid Singular Value Thresholding for Tensor Completion

In this paper, we study the low-rank tensor completion problem, where a high-order tensor with missing entries is given and the goal is to complete the tensor. We propose to minimize a new convex objective function, based on log sum of exponentials of nuclear norms, that promotes the low-rankness of unfolding matrices of the completed tensor. We show for the first time that the proximal operato...

متن کامل

A Fast Implementation of Singular Value Thresholding Algorithm using Recycling Rank Revealing Randomized Singular Value Decomposition

In this paper, we present a fast implementation of the Singular Value Thresholding (SVT) algorithm for matrix completion. A rank-revealing randomized singular value decomposition (RSVD) algorithm is used to adaptively carry out partial singular value decomposition (SVD) to fast approximate the SVT operator given a desired, fixed precision. We extend the RSVD algorithm to a recycling rank reveal...

متن کامل

Fast Singular Value Thresholding without Singular Value Decomposition

Singular value thresholding (SVT) is a basic subroutine in many popular numerical schemes for solving nuclear norm minimization that arises from low-rank matrix recovery problems such as matrix completion. The conventional approach for SVT is first to find the singular value decomposition (SVD) and then to shrink the singular values. However, such an approach is time-consuming under some circum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Power Delivery

سال: 2022

ISSN: ['1937-4208', '0885-8977']

DOI: https://doi.org/10.1109/tpwrd.2021.3126843